1. Xe has a bigger atomic radius **OR** Xe has more shells \checkmark

ALLOW Xe has more energy levels
ALLOW Xe has electrons in higher energy level
ALLOW Xe has electrons further from nucleus
IGNORE Xe has more orbitals OR more sub-shells
DO NOT ALLOW 'different shell' or 'new shell'

Xe has **more** shielding ✓

ALLOW More screening

There must be a clear comparison ie **more** shielding **OR** increased shielding.

i.e. **DO NOT ALLOW** Xe 'has shielding' **ALLOW** Xe has **more** electron repulsion from inner shells

The nuclear attraction decreases

OR Outermost electrons of Xe experience less attraction (to nucleus)

OR Increased shielding / distance outweighs the increased nuclear charge ✓ ORA throughout

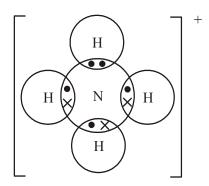
ALLOW Xe has less nuclear pull

IGNORE Xe has less effective nuclear charge

DO NOT ALLOW nuclear charge for nuclear attraction

[3]

2.
$$3d^{10} 4s^2 4p^5 \checkmark$$


ALLOW $4s^2 3d^{10} 4p^5$ ALLOW subscripts or $3D^{10}$ ALLOW answers with $1s^2 2s^2 2p^6 3s^2 3p^6$ appearing twice

[1]

3. (i)
$$1s^22s^22p^63s^23p^6 \checkmark$$
ALLOW subscripts

1

(ii)

'Dot-and-cross' diagram to show four shared pairs of electrons one of which is a dative covalent bond (which must consist of the same symbols) <

IGNORE inner shells

IGNORE '+' sign BUT DO NOT ALLOW a '-' sign.

Brackets and circles not required

1

(iii) tetrahedral ✓

109.5° ✓

ALLOW 109 – 110°

2

2

(iv) ions **OR** electrons cannot move in a solid ✓

ions can move **OR** are mobile in solution ✓

ALLOW ions can move in liquid

DO NOT ALLOW ions can move when molten

ALLOW 1 mark for:

'Ions can only move in solution'

[6]

4. the energy required to remove one electron ✓ from each atom in one mole ✓ of gaseous atoms ✓

ALLOW 3 marks for:

the energy required to remove one mole of electrons ✓

from one mole of atoms ✓

atoms in the gaseous state ✓

If no definition, **ALLOW** one mark for the equation below, including state symbols.

$$X(g) \to X^{+}(g) + e^{-}/X(g) - e^{-} \to X^{+}(g)$$

ALLOW e for electron

IGNORE state symbol for electron

[3]

- (i) $O^{+}(g) \rightarrow O^{2+}(g) + e^{-} \checkmark$ 5. answer must have state symbols ALLOW e for electron $ALLOW O^+(g) - e^- \rightarrow O^{2+}(g)$ **DO NOT ALLOW** $O^{+}(g) + e^{-} \rightarrow O^{2+}(g) + 2e^{-}$ IGNORE state symbol for electron
 - (ii) the O⁺ ion, is smaller than the O atom the electron repulsion/shielding is smaller the proton: electron ratio in the 2+ ion is greater than in the 1+ ion \checkmark

ALLOW the outer electrons in an O^+ ion are closer to the nucleus than an O atom

DO NOT ALLOW 'removed from next shell down'

- **6.** number of protons (in the nucleus) ✓ (i) ALLOW proton number ALLOW number of protons in an atom IGNORE reference to electrons
 - (ii) $(1s^2)2s^22p^63s^23p^63d^24s^2$ **ALLOW** 1s² written twice ALLOW subscripts **ALLOW** $4s^2$ before $3d^{2+}$ 1
 - (iii) Mn / manganese and d ✓ ALLOWD1

[3]

1

1

1

[2]

7. (i) atoms of the same element with different numbers of neutrons/different masses (1)

1

(ii) ⁷⁹Br 35 protons, 44 neutrons, 35 electrons (1) ⁸¹Br 35 protons, 46 neutrons, 35 electrons (1)

2

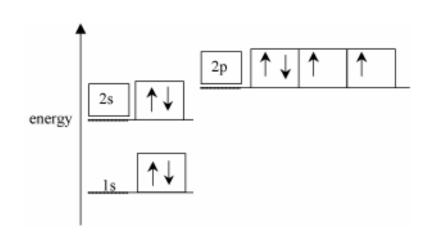
1

2

(iii) $(1s^2)2s^22p^63s^23p^63d^{10}4s^24p^5$ (1)

[4]

8. (a)


1, 2 or 3 p orbitals are OK

- (b) d orbital 2 ✓ p sub-shell 6 ✓
 - 3rd shell 18 ✓

3

(i)

(ii)

2

2s and 2p labels ✓ Ignore any superscripted numbers. 8 electrons in correct levels with arrows correctly shown ✓

[7]

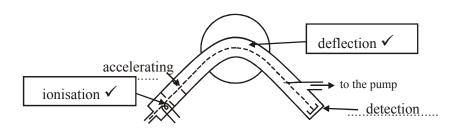
9. (i) Energy change when each atom in 1 mole ✓ of gaseous atoms ✓

loses an electron ✓ (to form 1 mole of gaseous 1+ ions).

2

(ii) O²⁺(g) → O³⁺(g) + e⁻ ✓✓
 1 mark for correct species; 1 mark for state symbols No charge required on electron.
 Ignore (g) on e

(iii) Large difference between 6th and 7th IEs ✓ marking a different shell (closer to nucleus) ✓


2

allow 'inner shells'/new shell/full shell/first shell marking points independent.

not sub-shell or orbital

[7]

10. (i)

	protons	neutrons	electrons		
25 Mg	12	13	12	✓	
26 Mg	12	14	12	✓	2

(ii) $1s^22s^22p^63s^2$

 $24 \times 78.60/100 + 25 \times 10.11/100 + 26 \times 11.29/100$

1

2

(iii) = 24.33 ✓ (calc value: 24.3269. This scores one mark)
 24.32 with no working, award 1 mark only.
 24.3 with no working, no marks (Periodic Table value)

[5]

11. (a) Energy change when **each atom in 1 mole√** of gaseous **atoms√**

loses an electron ✓ (to form 1 mole of gaseous 1+ ions).

3

	(b)	From Li → N, ionisation energy increases ✓ number of protons/nuclear charge increases ✓ nuclear attraction increases / shell drawn in by increased nuclear charge/ atomic radius decreases ✓ across period, electrons added to same shell ✓ Not same subshell				
		From Be → B, ionisation energy decreases ✓ for B, electron is removed from a p sub-shell/p orbital/different sub-shell ✓ which has a higher energy ✓ watch for distinction between nuclear attraction and nuclear charge in candidates' scripts.	7			
		Also watch for confusion between shell and subshell. Al Sharp rise in successive ionisation energy between 3rd and 4th IE marking a change to a new or different shell / there are 3 electrons in the outer shell mention of 'orbital' or 'sub-shell cancels 'shell mark' Each marking point for Al is independent	3			
		QoWC: links together two pieces of information correctly within two of the sections below: 1. General trend across period 2. Be to B Successive ionisation energies✓		[13]		
12.	(i)	$Ca^{+}(g) \rightarrow Ca^{2+}(g) + e^{-}$ Equation with correct charges and 1 electron lost \checkmark state symbols \checkmark '-' not required on 'e'	2			
	(ii)	same number of protons or same nuclear charge attracting less electrons/ electron removed from an ion/ less electron-electron repulsion (not less shielding)/ ion is smaller	1			
	(iii)	atomic radii of Sr > atomic radii of Ca/ Sr has electrons in shell further from nucleus than Ca/ Sr has electrons in a higher energy level/ Sr has more shells ✓ Therefore less attraction ✓ Sr has more shielding than Ca ✓ ('more' is essential)	3			
		increased nuclear charge is outweighed / despite increased nuclear chargeby at least one of the factors above ✓		[6]		

PhysicsandMathsTutor.com 6

13. $1s^2 2s^2 2p^2 \checkmark$

[1]

14. Energy change when each atom in 1 mole \checkmark (i) of gaseous atoms 🗸 loses an electron ✓ (to form 1 mole of gaseous 1+ ions).

3

increasing nuclear charge/number of protons ✓ (ii) electrons experience greater attraction or *pull* / atomic radius decreases / electrons added to same shell /same or similar shielding ✓

2

2

(iii) In B, electron being removed is at a higher energy / In Be, electron being removed is at a lower energy ✓

An s electron is lost in Be AND a p electron is lost in B ✓

[7]

15. $1s^22s^22p^63s^23p^63d^24s^2$

[1]

First ✓ ionisation (energy) ✓ 16. (i)

2

 $Ra(g) \rightarrow Ra^{+}(g) + e^{-} \checkmark \checkmark$ 1 mark for equation

1 mark for state symbols '-' not required on 'e'

2

3

atomic radii of Ra > atomic radii of Ca/ (ii) Ra has electrons in shell further from nucleus than Ca/ Ra has more shells 🗸

Ra has **more** shielding than Ca \checkmark

: 'more' is essential

Ra electron held less tightly/less attraction on electron ✓

[7]

(i) $1s^22s^22p^63s^23p^6....3d^{10}4s^24p^5 \checkmark \checkmark$ 17.

2

1

Award 1 mark for p^5 .

Highest energy sub-shell/sub-shell/being filled is the p (ii) sub-shell/outer electrons are in a p (sub-shell/orbital/shell) ✓

[3]

18. (a) Energy change when each atom in 1 mole ✓ of gaseous atoms ✓ 3
loses an electron ✓ (to form 1 mole of gaseous 1+ ions).

(b) increasing nuclear charge/number of protons ✓
electrons experience greater attraction or *pull*/atomic radius decreases/electrons added to same shell/same or similar shielding ✓

[5]

2